Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 9731, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697901

RESUMO

The molluscs Lucinoma capensis, Lembulus bicuspidatus and Nassarius vinctus are highly abundant in Namibian oxygen minimum zone sediments. To understand which nutritional strategies allow them to reach such impressive abundances in this extreme habitat we investigated their trophic diversity, including a chemosymbiosis in L. capensis, focussing on nitrogen biochemical pathways of the symbionts. We combined results of bulk nitrogen and carbon (δ13C and δ15N) and of compound-specific isotope analyses of amino acid nitrogen (AAs-δ15NPhe and δ15NGlu), with 16S rRNA gene sequencing of L. capensis tissues and also with exploratory results of ammonium, nitrate and nitrite turnover. The trophic position (TP) of the bivalve L. capensis is placed between autotrophy and mixotrophy, consistent with its proposed symbiosis with sulfur-oxidizing Candidatus Thiodiazotropha sp. symbionts. The symbionts are here revealed to perform nitrate reduction and ammonium uptake, with clear indications of ammonium host-symbionts recycling, but surprisingly unable to fix nitrogen. The TP of the bivalve L. bicuspidatus is placed in between mixotrophy and herbivory. The TP of the gastropod N. vinctus reflected omnivory. Multiple lines of evidences in combination with current ecosystem knowledge point to sedimented diatoms as important components of L. bicuspidatus and N. vinctus' diet, likely supplemented at times with chemoautotrophic bacteria. This study highlights the importance of benthic-pelagic coupling that fosters the dietary base for macrozoobenthos in the OMZ. It further unveils that, in contrast to all shallow water lucinid symbionts, deeper water lucinid symbionts rely on ammonium assimilation rather than dinitrogen fixation to obtain nitrogen for growth.


Assuntos
Compostos de Amônio , Bivalves , Diatomáceas , Gammaproteobacteria , Compostos de Amônio/metabolismo , Animais , Biomassa , Bivalves/genética , Crescimento Quimioautotrófico , Diatomáceas/metabolismo , Ecossistema , Gammaproteobacteria/genética , Nitratos/metabolismo , Nitrogênio/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Simbiose , Água/metabolismo
2.
FEMS Microbiol Ecol ; 95(4)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30785612

RESUMO

The paradox of methane oversaturation in oxygenated surface water has been described in many pelagic systems and still raises the question of the source. Temora sp. and Acartia sp. commonly dominate the surface and subsurface waters of the central Baltic Sea. It is hypothesised that their gut microbiome at least partly contributes to the methane anomaly in this ecosystem. However, the potential pathway for this methane production remains unclear. Using a microcapillary technique, we successfully overcame the challenge of sampling the gut microbiome of copepods <1 mm. 16S rRNA gene amplicon sequencing revealed differences among the dominant bacterial communities associated with Temora sp. (Actinobacteria, Betaproteobacteria and Flavobacteriia) and Acartia sp. (Actinobacteria, Alphaproteobacteria and Betaproteobacteria) and the surrounding water (Proteobacteria, Cyanobacteria and Verrucomicrobia), but also intraspecific variability. In both copepods, gut-specific prokaryotic taxa and indicative species for methane production pathways (methanogenesis, dimethylsulfoniopropionate or methylphosphonate) were present. The relative abundance of archaea and methanogens was investigated using droplet digital polymerase chain reaction and showed a high variability among copepod individuals, underlining intra- and interspecific differences in copepod-associated prokaryotic communities. Overall, this work highlights that the guts of Temora sp. and Acartia sp. have the potential for methane production but are probably no hotspot.


Assuntos
Copépodes/microbiologia , Microbioma Gastrointestinal , Água do Mar/microbiologia , Animais , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Copépodes/classificação , Microbioma Gastrointestinal/genética , Especificidade de Hospedeiro , Metano/biossíntese , Oceanos e Mares , RNA Ribossômico 16S/genética , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...